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ABSTRACT

Flexibility effects on robot manipulator design and

control are typically ignored which is justified when

large, bulky robotic mechanisms are moved at slow speeds.

However, when increased speed and improved accuracy is

desired in robot system performance it is necessary to

consider flexible manipulators. This project simulates

the motion of a single-link, flexible manipulator using

the Equivalent Rigid Link System dynamic model and

experimentally validates the computer simulation results.

Validation of the flexible manipulator dynamic model is

necessary to ensure confidence of the model for use in

future design and control applications of flexible

manipulators.
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I. INTRODUCTION

The desire to design, build, and operate a lightweight,

long-reach manipulator for NASA space shuttle usage was a

prime impetus for generating interest in the flexibility

effects of robotic arms [Ref. 1: pp. 3, 9]. Interest in

improving productivity in automated manufacturing plants

through increased speed and accuracy have additionally

sparked a desire to further investigate flexibility effects

in mechanical devices [Ref. 2: pp. 1, 2]. The design,

construction, and operation of a flexible robotic manipulator

arm has many attractive features. In the past the manipulator

was assumed being composed of rigid links and dictated that

the link design be large members, both in cross-sectional

area and weight. The flexible arm would require minimal

material and consequently would have less weight and bulk

than conventional rigid-arm robots. With a smaller, lighter

weight manipulator, less power would be needed to move the

arm which could mean use of smaller actuators. Arm speed

movement would increase if the actuator size is not reduced.

A smaller, lighter weight manipulator would require less

foundation mounting strength and rigidity requirements. The

reduced foundation mounting requirements coupled to the less

material required for the arm construction would translate

to a lower overall cost to build a flexible-arm robot compared

7



to a rigid-arm robot. The reduced mass of the flexible-arm

robot would cause less damage if inadvertent collision

occurred and would be consequently safer to operate compared

to a rigid-arm robot. Finally, the reduced weight of the

flexible-arm robot would allow for easy transportability

[Ref. 3: p. 1209].

The preceding discussion of the advantages of utilizing

flexible-arm robots points to their tremendous potential for

application in industry, in the military, and in space. In

spite of these advantages for utilizing flexible-arm robots,

until recently there has been a reluctance to investigate

the design and control of flexible manipulator arms. One

reason for this reluctance is the degradation of the end-

effector positioning accuracy due to the increased deformation

of the lightweight, flexible arm. Also, the increased vibra-

tion of the flexible arm causes a significant control problem

when coupled with the large-scale translational and/or

rotational motion of the robot [Ref. 3: p. 1209]. This control

problem arises due to the reduced bandwidth of the flexible

manipulator system and the consequent limitation on values of

gain in the control design. The reduced bandwidth is the

result of the lower fundamental frequency inherent in a

flexible manipulator system compared to a rigid system. In

order to benefit from the advantages of lightweight,flexible

manipulators it is necessary to implement a control design

capable of achieving end-effector positioning accuracy and

stable control.

8



Extensive research began in the early 1980's into the

design and control aspects of a flexible manipulator arm.

Information on the dynamic response and the natural frequen-

cies of the flexible manipulator arm is useful to the designer

in predicting deformations and stress levels. An accurate

dynamic model including flexibility allows for simulation

studies by the designer enabling him to extract his required

information. An accurate dynamic model including flexibility

is also necessary for any controller design which is to sub-

sequently control a flexible manipulator [Ref. 2: pp. 2, 3].

An integral, essential part of improving the accuracy and

stability problems associated with flexible manipulator arms

is, therefore, the development of an accurate, dynamic model

of the flexible arm. There are several approaches to the

development of a flexible structure dynamic model in the

literature, some of which are reviewed below.

Until recently, the approach to modeling robotic mecha-

nisms assumed a rigid structure. The motion consequently

described by these models included only the large, rigid-

body motion, hereafter referred to as large motion. The

recent approach in the development of a dynamic model for

robotic mechanisms is to include the small motion deforma-

tions arising from the flexibility of the structure,

hereafter referred to as small motion. These small motion

deformations include bending, twisting, and axial extending.

9



Sunada and Dubowsky [Ref. 4] utilized the 4x4 transforma-

tion matrices including the effects of flexibility to describe

the kinematics of flexible arm motion, specifically applied to

industrial robots. The small motion deformations were super-

imposed on an assumed nominal large motion to include the

effects of flexibility. This model ignored, however, the

effect of the small motion interaction on the large motion,

and consequently did not give a complete description of the

actual motion dynamics. Sunada and Dubowsky utilized finite

element method techniques and a method to discretize the

distributed motion known as Component Mode Synthesis to

obtain linear, ordinary, differential equations of motion.

Book [Refs. 5, 6] similarly included the small motion

deformations in the 4x4 transformation matrices but he

utilized a modal approach to model the flexible kinematics

and truncated the series of assumed vibration modes. After

application of Lagrange's equation and utilizing a combined

set of large and small motion hybrid coordinates, a complica-

ted set of dynamic equations of motion were obtained. The

resulting equations of motion were non-linear in both large

and small motion variables and were consequently time-

consuming and expensive to solve.

Cannon and Schmitz [Ref. 7] utilized a similar modal

approach with a Lagrangian formulation to model a single-

link flexible arm. This particular model was obviously very

restrictive in its application to robotic mechanisms. Cannon

10



and Hollars [Ref. 8] are investigating the modeling and

control of two-link manipulators with flexible tendons,

but it appears that the resultant dynamic model is likewise

restrictive to this special application.

Truckenbrodt [Ref. 9] modeled the flexible manipulator

as a "hybrid multibody system" consisting of both rigid

and flexible elements. The application of his model was to

a specialized example and compatibility between links was

not clearly shown.

Huston [Ref. 10] developed the dynamic equations of

motion for a flexible, multi-link manipulator utilizing

a combination Newton-Euler approach and d'Alembert's

principle. His assumption of a nominal large motion on

which to apply the small motion deformations was similar

to Dubowsky's and results in an incomplete representation

of the actual motion dynamics.

Chang [Ref. 2] introduced an Equivalent Rigid Link

System (ERLS) to describe the large motion kinematics.

The small motion deformations were described relative to

the Equivalent Rigid Link System. Applying finite element

techniques and Lagrangian dynamics, two sets of coupled,

non-linear, ordinary differential equations of motion were

obtained. Because of the use of the ERLS, these sets of

equations were composed of one set for large motions and one

set for small motions. The set of large motion equations

were non-linear in both the large and small motion variables.
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The set of small motion equations were linear in the small

motion variable and non-linear in the large motion variable.

These particular characteristics of the resultant sets of

equations of motion allowed for their relatively easy solution

by a technique developed by Chang known as the Sequential

Integration Method. Chang's model offered a complete repre-

sentation of the dynamics of flexible manipulators as well

as one that could be efficiently solved using the Sequential

Integration Method.

The purpose of this research is to experimentally validate

the accuracy of a dynamic model including flexibility. The

dynamic model chosen is that developed by Chang. This model

is tailored to a single-link flexible arm that was designed,

constructed, and operated for the purpose of the dynamic

model validation. Hydraulic actuation of the single-link

arm is utilized and the motion of the arm is limited to a

vertical plane. Computer simulation of the experimental

flexible arm using the adapted dynamic model is on the IBM

3033. The integration methods from the Continuous System

Modeling Program (CSMP) are utilized in the solutions of the

dynamic equations of motion. Techniques for the acquisition

of position data of the moving experimental arm are reviewed

in a subsequent chapter. Photography and strain gauge

measurement prove to be the most economical and siMple

procedures in this application.

12
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The remainder of this thesis includes a chapter on the

theoretical approach to model the dynamics of the flexible

manipulator using the Equivalent Rigid Link System (ELRS).

The Theoretical Approach chapter also includes a discussion

on the modelling of the hydraulic actuation dynamics and a

discussion of the computer simulation of the entire flexible

manipulator system.

A chapter is devoted to a description of the experimental

approach utilized in validating the dynamic simulation results.

The chapter reviews the design of the experimental manipulator

system, including the hydraulic actuation and the flexible arm.

The Experimental Approach chapter also reviews various tech-

niques investigated for experimentally determining the end-

point position of the flexible manipulator.

The Results chapter follows and presents a comparison of

the arm-tip position data obtained during the experimentation

to the arm-tip position data obtained from the computer

simulation. Also, a comparison is made between the actual

strain of the experimental arm and the strain predicted by

the ERLS dynamic model.

A chapter devoted to the control of flexible manipulators

is included to provide a brief literature review on this

aspect of flexible manipulator research. Additionally, an

initial attempt at controlling the single-link flexible

manipulator using the ERLS model is discussed.

13



Finally, a chapter each is devoted to drawing conclusions

on the lessons learned in this research effort and for making

recommendations on the future direction of research in

flexible manipulators.

14



II. THEORETICAL APPROACH

Chang's dynamic model is based on his introduction of an

Equivalent Rigid Link System (ERLS) to describe the large

rigid motion of the flexible manipulator system. The small

motion deformations are described relative to the ERLS. The

local coordinate system for each link is defined in the ERLS

and deformations are measured relative to this coordinate

system. Coordinate transformation utilizing joint variables

of the ERLS is applied to the actual deformed position at any

point on a link to obtain the absolute position of that point.

Time derivatives of the absolute positions are necessary for

the kinetic energy derivation for use in Lagrange's equations.

It is necessary to discretize the deformations since

these displacements are for each point along the flexible

arm. The Finite Element Method (FEM) is utilized to accom-

plish this discretization of the deformations. The FEM nodal

displacements represent the small motion deformations at the

end of the link. A cubic shape function is assumed for each

beam element. Choice of a cubic shape function ensures the

complete representation of the displacement including rigid

body rotation, translation, and compatibility of the displace-

ment between elements.

After having described the kinematical relationships

between the large and small motions, kinetics is introduced

15



to complete the derivation of the dynamic equations of

motion. Utilizing the Lagrangian formulation requires the

definition of generalized coordinates. The description of

large and small motions are a logical choice for the

generalized coordinates. The joint variables of the ERLS

and the nodal displacements are the two sets of generalized

coordinates utilized in Lagrange's equations. The kinetic

energy has contributions from each link, actuators, and any

loading. The potential energy has contributions from the

elastic strain energy and from gravity. Generalized forces

are included due to any applied forces and damping forces.

After considerable effort in mathematical manipulations,

rearrangements, and simplifications, the Lagrange equations

yield two sets of non-linear, coupled,second-order, ordinary

differential equations. One set of equations describes the

large motions and the other set of equations describes the

small motions, though both sets remain coupled. Details of

the adaptation of Chang's ERLS model to the experimental,

single-link, flexible arm are contained in Appendix A.

The equations of motion for the single-link flexible

arm are written as two sets of equations, one set consisting

of one equation for the large motion and one set consisting

of two equations for the small motion as follows,

MQQ e + MQN U = FQ (1)

MNQ 6 + MNN U + KN U = FN (2)

where,

IGI16
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MQQ is the lxl inertia matrix for large motions,

MQN is the lx2 coupled inertia matrix of the small motion

contribution to the large motion,

MNQ is the 2xl coupled inertia matrix of the large motion

contribution to the small motion,

MNN is the 2x2 inertia matrix for small motion,

KN is the 2x2 stiffness matrix,

FQ is the lxl load vector for the large motion,

FN is the 2xl load vector for the small motion,

e is the generalized coordinate of the single joint

variable representing the large motion,

U is the 2xl generalized coordinate vector of the

deformations representing the small motion.

Utilizing hydraulic actuation for the single-link

manipulator necessitates the derivation and the inclusion

of the hydraulic actuator dynamics into the equations of

motion of the flexible arm. The inclusion of the hydraulic

power system dynamic equations into the flexible manipulator

equations of motion involves the transformation of an input

current to an output torque. The servovalve and actuator

dynamics are included to make the description complete. Moog

simplifies their servovalve dynamics to a single non-linear

equation [Ref. 11],

Q K VPv (3)Q~T

where Q is the flow delivered from the servo valve,

I is the input current,

17



K is the valve sizing constant computed from the flow

conditions and is the servovalve contribution to the

overall hydraulic system damping

Pv is the valve pressure drop and is equal to the

difference between the supply pressure, Ps, and the

load pressure drop, P

The actuator dynamic includes the following continuity

equation and the torque output equation [Ref. 12, pp. 133-138]

Q =Dm e + Ctm Pl + 4 Be  (4)

Td = rt P1 Dm (5)

where Q is flow delivered from the servovalve to the

actuator,

D 0 is the flow component causing actuator rotation,

Ctm P1 is the leakage flow in the actuator,

Vt bIl
S1e is the compressibility flow,4 e

T d  is the required torque delivered to move the load

and to overcome intertia,

is the torque efficiency,

Dm is the motor displacement,

S is the actuator motor angular velocity,

P is the time derivative of the load pressure drop, P1,

18
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C tm is the total leakage coefficient of the actuator

and is the actuator contribution to the overall hydraulic

system damping

Vt is the total compressed volume including actuator

lines and chambers,

e is the effective bulk modulus of fluid.

Values for each of these parameters are computed from

the actuator specifications and from good engineering

judgement.

The following diagram shows the transformation of the

input current to an output position and includes the hydraulic

and flexible manipulator dynamics,

HYDRAULIC FLEXIBLE
INPUT ACTUATION MANIPULATOR OUTPUT

CURRENT DYNAMICS POSITIONDYNAMICS DYNMIC

The preceding hydraulic dynamic equations and relation-

ships are incorporated into the main computer program for

solving the dynamic equations of motion for the experimental

single-link flexible arm listed in Appendix B.

Computer simulation of the equations of motion for the

experimental arm and hydraulic actuator required the solu-

tion of three simultaneous, non-linear, coupled, second-order,

ordinary, differential equations. Fortran language and the

double precision, variable-step, fourth-order, Runge-Kutta

19



integration method available through the Continuous System

Modeling Program (CSMP) are utilized in coding the simulation.

Eq. 1 and 2 can be substituted into a matrix format to

create a 3x3 coefficient inertia matrix and a 3xl right-hand

side of forces and moments. The unknowns become the large

motion joint variable acceleration and the small motion

deformation vector accelerations. The matrix format appears

as follows:

MQQ MQN e FQ

MNQ MNN U FN - KN U

Construction of the computer coding involves forming

each of the elements of the coefficient inertia matrix and

the force/moment vector in a separate subroutine. Once

formed the elements are assembled into the matrix after

which an IMSL linear equation solver subroutine is used to

solve for the accelerations. The accelerations are integrated

twice using the double precision, variable-step, fourth-order,

Runge-Kutta integration method available through the Continu-

ous System Modeling Program (CSMP). Finally a transformation

from local coordinates to global coordinates takes place to

get global position information on the motion of the arm tip.

20



Initially, the single-link parameters and the motion

variables initial conditions are input. There is also a need

to form the various transformation, inertia, and assorted

other matrices for use later in the inertia and force/moment

matrix subroutines. Another prerequisite for constructing

the equations of motion are subroutines for doing matrix

multiplication and addition, and for doing the matrix opera-

tions of the transpose and the trace. These subroutines are

all listed in the copy of the coding in Appendix B.

Results from the computer simulation and their comparison

to the actual experimental motion data are discussed in the

Results chapter.

21



III. EXPERIMENTAL APPROACH

The experimental validation of the Equivalent Rigid Link

System (ERLS) dynamic model on a single-link flexible manipu-

lator required a significant preliminary design effort. The

power system for the experimental arm needed to be chosen,

designed, and purchased. Detailed design of the single-link

flexible arm needed to be completed and the arm needed to be

manufactured. Techniques for the measurement of the position

versus time of the flexible arm tip needed to be investigated

and a suitable technique chosen. The power system and the

experimental single-link flexible arm finally needed to be

assembled into an operational system and the arm tip position

measurement technique needed to be implemented.

It was decided to choose a hydraulic system to power the

experimental arm. The reasons for this choice included the

desire to increase the Mechanical Engineering Departments'

exposure to hydraulics and to utilize the knowledge gained

while taking the Fluid Power Control course. The Naval

Surface Weapons Center, White Oak, located at Silver Spring,

Maryland agreed to fund the purchase of the required components

of the hydraulic power system as a result of their support of

the robotic research effort in the Mechanical Engineering

Department at the Naval Postgraduate School.

22



The design of the hydraulic power system involved the

selection of the appropriately sized actuator, servovalve,

and power unit, as well as the selection of a suitable servo-

controller, high pressure filter and position transducer.

Miscellaneous hoses and fittings were obviously also required

for the final system assembly.

The power supply selected was a York hydraulic power unit

that was available in the Mechanical Engineering Department.

This unit was overhauled and upgraded to include a 3 horse-

power motor and starter to increase the system supply pressure

to 2250 psi.

The selection of the servovalve and actuator required the

following analysis [Ref. 12: pp. 81, 133-138]

1. Assume a load description of the form

J +T 1  Td

where J is the total moment of inertia of the arm

and the load reflected from the base,

T 1  is the maximum load torque including the weight

of the arm and maximum loading (15 lbf) in the horizontal

position,

Td  is the required torque delivered to move the load

and to overcome inertia,

is the actuator motor angular acceleration

22. Assume a design point of -=45 deg/sec, =45 deg/sec

23
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3. The given geometry and dimensions of the arm and loading

results in the following total inertia,

2
J = 74.6942 in-lbf-sec

4. The maximum load torque including the weight of the arm

and the loading is,

T = 804.380 in-lbf.

5. Assume the system supply pressure, Ps' is 2000 psi and

that the load pressure drop, PI' is 2/3 of Ps = 1333.3 psi.

Assume the torque efficiency is worst case, t .6.

The required displacement of the motor, Dm, is

therefore,

Td 3
D - = 1.0788 in /rad

The selected actuator must at least have this displace-

ment. Bird-Johnson's 3-axis Hyd-Ro-Wrist with a displacement

in the pitch axis of 4.0 in3/rad was chosen. The wrist

additionally has yaw and roll axes each with a 1.0 in3/rad

displacement. However, in this thesis research only the

pitch axis was utilized and the yaw and roll axes were

removed.

6. The selection of the servovalve required an estimation

of the flow delivered to the actuator at design conditions.

The continuity equation (Eq. 4) describes the flow to the

actuator.

24



At design conditions P1  is assumed zero. After using

good engineering judgement in assuming values for each

parameter, the design flow corrected to rated conditions

Abecomes,

Q-design = .637 gpm

Moog 760-100 servovalve having a 1.0 gpm rated flow

was selected.

7. A Moog servocontroller and a high pressure filter

assembly were chosen to complete the hydraulic power

system. A Bourn potentiometer will be used to extract

large motion rotation data for use with the photography

measurements in determining arm tip position.

Ideas for the design of the experimental arm were

initially investigated by visiting the robotic research

laboratories at Stanford University and at SRI International.

The experimental flexible manipulator systems utilized by

Cannon at Stanford and by Andeen at SRI provided valuable

information for the design of the experimental arm [Ref. 7].

Figures 1, 2 and 3 are photographs of the experimental flexible

arm and the hydraulic power system. The basic configuration

of the arm includes two parallel, flexible, steel, flat bars

connected by thin steel strips to transverse steel bridges.

The parallel flat bars provide for flexibility in a vertical

plane only. This flexibility is minimally hindered by the

transverse bridges because of the thin, connecting, flexible

25
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strips. The transverse bridges increase torsional rigidity

and reduce the tendency of the arm to twist while in motion.

Figure 4 is a photograph showing the inclusion of the trans-

verse bridges in the flexible arm construction. External

loading is attached to the arm tip end transverse bridge

by the securing of the load on the four welded studs. The

hydraulic actuator is attached to the other end of the

flexible arm.

The validation of the ERLS dynamic model requires the

comparison between the predicted arm tip position from the

model and the actual arm tip position from the experimental

single-link manipulator. The computer program listed in

Appendix B generates the flexible arm tip position referenced

to a planar, global coordinate system having the origin at

the hydraulic actuator rotation axis. The problem of deter-

mining the arm tip position of an experimental, flexible

manipulator is far more difficult than that experienced in

determining the arm tip position of a rigid manipulator.

There is currently a significant research effort in developing

accurate techniques for arm tip position measurement and

control of a flexible manipulator. A brief summary of the

techniques investigated for possible use in this thesis

research follows.

The first technique considered was the crude but effec-

tive method of taking motion pictures of the arm against a

grid background with a time counter in the field of view.
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Figure 4. Flexible Manipulator Showing
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The arm tip position at any time is manually determined on

each picture frame by counting the number of grid lines in

the vertical and horizontal directions.

Cannon and Schmitz [Ref. 7] utilized an optical sensing

system of a focusing lens, a photodetector, an amplifier,

and an A/D converter to acquire position data from their

horizontally moving, flexible arm. An incandescent light

bulb was affixed to the tip of the arm and provided the

light intensity that was received by the optical sensing

system. This technique appeared to be suitable for its

specialized application, but may not be as satisfactory in

general usage.

The National Bureau of Standards has conducted manipula-

tor end-point position sensing experiments using an automatic

laser tracking interferometer system. Initial experiments

have provided very promising results [Ref. 131. The signifi-

cant drawbacks to this laser tracking technique were its

current high cost and complicated technology.

Andeen has utilized strain gages and extrapolated the

deflection to the arm tip assuming first mode vibration.

This technique was relatively simple, but may be inaccurate

unless the predominant mode of vibration is the first mode.

Interfacing the planar motion of the flexible arm to a

digitizing tablet provided a potentially feasible technique

for acquiring arm tip position. This technique would allow

for automatic, time-efficient, position data acquisition.

I 1j111 1111 13 1
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This technique was obviously only applicable to planar

motion of the manipulator and was expensive to implement

for large motion excursions of the arm.

Lt. William M. Dunkin [Ref. 14] conducted research at

the Naval Postgraduate School on the use of ultrasonics for

a position reference system of a manipulator arm. His work

was preliminary in nature and his experiments utilized a

stationary manipulator. Despite the poor accuracy of the

results, use of ultrasonics for arm tip positioning and

control has significant potential if further research

continues to perfect this technique.

Use of a position/displacement transducer that provided

an electrical signal proportional to the linear extension of

a cable offered another technique for automatic, position

data acquisition. Arranging a transducer on each planar

coordinate axis and affixing each cable to the arm tip would

allow for accurate positioning to occur. To utilize this

measuring technique would require the inclusion of the cable

tension in the arm dynamic equations of motion.

Use of accelerometers followed by two electrical integra-

tions to yield position information offers good frequency

response and are commercially available. Use of a digitizing

vision system for automatic position data acquisition has

great promise for future robotic apF ications, but is

currently very expensive to implement. [Ref. 15]
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For this research the use of motion pictures and strain

gages were selected based on the availability, simplicity,

and cost. The use of motion pictures in planar applications,

though tedious, can provide excellent results of arm tip

position data. Strain gages are utilized to compare the

actual strain of the experimental arm to the strain predicted

by the ERLS dynamic model.
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IV. RESULTS

The validation of the ERLS dynamic model includes a

comparison between the actual arm tip position and the

predicted arm tip position. The actual arm tip position

measurements were obtained by taking motion pictures of

the experimental arm and by a frame-by-frame examination

of the motion. As an additional check, the utilization

of strain gages allowed for a comparison between the actual

strain of the experimental arm and the strain predicted by

the ERLS dynamic model.

Evaluation of the plots of experimental and theoretical

position or strain requires a comparison criteria. Frequency

and amplitude are the parameters utilized in establishing

the criteria for comparison. Similarity in frequency content

and amplitude is necessary for determination of proper

control action in the closed-loop servo system design and

for an accurate representation of the actual motion in any

flexible manipulator machinery design application. A relative

percentage error of +/-10% from the experimental results is

considered the standard for comparison. The strain amplitude

and frequency errors are computed by taking the difference

between the theoretical and experimental strain values. The

strain amplitude is a combination of both fundamental and

second mode amplitudes but examination of the plots reveals
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that the first mode amplitude is dominant. The strain

frequency error is separated into the fundamental and

second mode errors. The tip position amplitude error is

computed by taking the square root of the sum of the squares

of the differences between the theoretical and experimental

X and Y coordinate positions. The tip position frequency

errors are computed by taking the difference between the

theoretical and experimental tip position frequencies. Only

the first mode frequency and amplitude errors are determined

for the arm tip position. The normalization of the absolute

error to a relative error is accomplished using the arm

length for the tip position amplitude measurements and the

experimental strain amplitude for the strain amplitude

measurements. The experimental frequencies are used for

normalizing the tip position and strain frequency errors.

This normalization is accomplished in order to compute the

appropriate order of magnitude error between the theoretical

predictions and the experimental results.

Figures 6, 7, and 8 are plots for three loading conditions

of the comparison of experimental to theoretical arm tip

positions in the global X (horizontal) and Y (vertical)

coordinate directions. The three loading conditions are the

no-load condition, the 5 pound load condition, and the 10

pound load condition. The excitation of the hydraulic

actuation for all three loading conditions is a step input

of 4 milliamps current. The initial condition for these

experimental runs is the horizontal position of the lexiDle

Vq.
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arm. Experimental arm tip position data requires a prelimi-

nary parallax correction and a geometric transformation

prior to plotting. The parallax correction is necessary

because of the relatively close proximity of the camera to

the experimental arm motion. The geometric transformation is

necessary because of the offset of the base of the experi-

mental arm from the axis of rotation of the hydraulic actuator.

Four CEA-06-12UW-350 strain gages are installed on the

flexible arm. Two are placed on opposite sides of the

neutral axis at the base and at the mid-longitudinal

position of the arm. Consequently, two gages provide

tensile strain readings and two gages provide compressive

strain readings. A mid-longitudinal position gage is

selected for plotting strain data because of the higher

sensitivity, and consequently better resolution, in the

strip chart recording. The theoretical strain predicted

by the ERLS dynamic model in the mid-longitudinal position

is computed from the Finite Element shape matrix describing

the transverse or bending displacement of the flexible arm.

The derivation of the theoretical strain is included in

Appendix C. Figures 9, 10 and 11 are plots for the three

loading conditions of tme comprarison of experimental to

theoretical icrostrain. u.c~tation of the hydraulic

actuation for ail t:ce 15adi23 con;: tions is a step input

of 4 nillimrus current. :1 ....... condci-tion for these

[__'r.erimental runs is the 2ertcal -osit'-n o" the flexible

a rr. .
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Utilization of the evaluation criteria of +/-10% error

reveals the tip position amplitude error is acceptable. This

is significant considering the importance of tip position

accuracy as a criteria for evaluating robot performance.

Because of the lack of adequate tip position accuracy for

certain applications a significant research effort is ongoing

to develop appropriate tip sensors to compensate for the

position errors. The acceptable tip position amplitude

error despite the single element modelling allows for

relatively accurate predictions of tip position motion and

consequently suggests the potential usefulness of the ERLS

model in improving the tip position accuracy. Table I lists
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the relative percentage errors of tip position amplitude

for the different loading conditions given a 4.0 milliamp

input current to the servovalve.

TABLE I

RELATIVE PERCENTAGE ERRORS OF TIP POSITION AMPLITUDE

No Load 10.7

2.11 Kg Load 10.5

4.23 Kg Load 11.5

The differences in amplitude observed in the arm tip

position measurements are attributed to the error in

recording the experimental position data, to the single

element modelling of the experimental arm, and to the small

displacement assumption of the vibration. Specifically, the

frame-by-frame examination of the arm tip position is

hindered by the lack of clarity of the arm tip and by the

absence of definition of the background grid measurement

lines. Improvement in the grid spacing and color intensity

and in the camera exposure setting would improve the quality

of the recorded data. The increased rigidity resulting from

the single element model of the experimental arm is responsi-

ble for the amplitude of the theoretical X tip and Y tip

42
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position data to be less than the experimental position data

and would increase as the number of elements is increased

in the model.

Axial deformations are neglected and small bending

displacements are assumed in the theoretical modelling of

the experimental arm. The effect of these assumptions is

noticed in the comparison of the X coordinate arm-tip posi-

tion during the first few tenths of a second of motion.

The experimental arm tip position actually decreases during

this initial time period. The theoretical model predicts

an increase in arm tip position, particularly during the

heavier loading conditions. Figure 12 illustrates how the

theoretical model could predict an increase in the X coordi-

nate tip position. The theoretical arm position approximates

the actual arm position and because the small motion displace-

ment is measured with respect to the ERLS local coordinate

axis the theoretical arm Len,:- appears to increase. This

arm length increase is espe : ,1 :lied with large

displacements which result .r ,.e: L ading. For smaller

displacements the arm Len .t:, . "e s nejlilgible. The

increase in the arm len ;t,; 'a: ,. n increase in

the theoretical X coor .i. i_ .. .

The motion pictures -ere t ken it i cremera s:,eed of 24

frames per second. Since t-._? f..I1:mental mn second mode

frequencies of the ez.periment-il arm withiout ny load are 2

hertz and 13 hertz respectiveL[', onil. the iun amental
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frequency is observed by the motion pictures. Comparison of

the frequency content of the experimental and theoretical

arm tip position reveals close agreement for the fundamental

'frequency. Comparison of the frequency content of the experi-

mental and theoretical strain reveals that the experimental

results have lower frequency content compared to the theoreti-

cal results in both the fundamental and second mode frequencies.

Utilization of the evaluation criteria reveals the standard of

+/-10% relative percentage error is exceeded for the second

mode frequency using the strain measurements. Table II lists

the relative percent ge errors of the frequencies for the

different loading conditions given a 4.0 milliamp input

current to the servovalve.

TABLE II

RELATIVE PERCENTAGE ERROR OF FREQUENCIES

Strain Data Fundamental Second Mode

No Load 5 38

2.115 Kg Load 5 26

4.23 Kg Load 6 22

Tip Position Data Fundamental

No Load 5

2.115 Kg Load 5

4.3 Kg Load 5
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The no-load theoretical fundamental and second mode

frequencies are predicted to be 2 hertz and 18 hertz

respectively. The difference in frequency content between

the theoretical predictions and the experimental results is

explained in that only one element from the Finite Element

Method is utilized in modelling the experimental arm. The

single element model limits the number of degrees of freedom,

and consequently the flexibility, of the dynamic model. The

dynamic model therefore appears more rigid than the actual

experimental arm. Increasing the number of elements in

modelling the experimental arm would increase the flexibility

of the dynamic model which would reduce the frequencies of

predicted motion. Error between the experimental and theoreti-

cal results is additionally introduced by the limited resolu-

tion of the strain measurements from the strip chart recorder.

Utilization of the evaluation criteria reveals the

standard of +/-10% error is exceeded for strain amplitude

measurements. Table III lists the relative percentage errors

of strain amplitude for the different loading conditions

given a 4.0 milliamp input current to the servovalve. The

amplitude of the theoretical strain measurements are typically

less than the experimental strain measurements in both the

fundamental and second mode frequencies. This observation is

again explained by the limitation on flexibility imposed by

the single element model of the experimental arm. Increasing

the number of elements in modelling the experimental arm would
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increase the flexibility of the dynamic model which would

result in increased amplitudes of predicted strain.

TABLE III

RELATIVE PERCENTAGE ERRORS OF STRAIN AMPLITUDE

Strain Data

No Load 38

2.115 Kg Load 38

4.23 Kg Load 41

Table II indicates that the relative percentage error of

the first mode frequency increases slightly while the error

of the second mode frequency decreases as the loading is

applied. Tables I and III indicates that the relative

percentage error of the tip position and strain amplitudes

increases slightly as the loading is applied. As mentioned

before, the first mode amplitude is dominant. With increased

loading the experimental arm becomes softer or more flexible.

The dominant first mode strain amplitude and the first mode

tip position amplitude are slightly more difficult to predict

as the arm flexibility increases. This observation is con-

sistent with the slight increase in error in the first mode

frequency as the loading increases. These trends are consistent

with the previous observations that the theoretical predictions

result in a stiffer system compared to the experimental results.
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In other words, the single element model better predicts the

first mode amplitude and frequency of a stiff system compared

to a softer system. As the loading increases resulting in

a more flexible system, the first mode strain frequency and

dominant first mode strain amplitude errors increase slightly.

Similarly, the first mode tip position amplitude error

increases slightly.

The trend of the strain second mode frequency error

initially appears as an anomaly since the error decreases as

the loading increases. This trend contradicts the expected

result that is observed in the first mode frequency and

amplitude error trends. The trend in the second mode

frequency error suggests that the theoretical model more

easily predicts the second mode frequency of a softer system.

In other words, the theoretical model is better suited for

predicting the second mode frequency in a flexible system.

The accuracy of the theoretical model to predict the

experimental arm deformation is dependent upon the shape

function approximation of the natural modes. The choice

of the shape function described in Appendix C to describe

the deformations results in the observed trend in the strain

second mode frequency error with loading.

Investigation of the predicted and actual strains for

an excitation of 3.0 milliamps current to the servovalve was

made and revealed similar trends in frequency and amplitude

errors as noted in the 4.0 milliamps case. As expected, the
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maximum strains achieved and predicted are less in the 3.0

milliamps case. However, the relative error percentages in

the 3.0 milliamps case are not any less than the 4.0 milliamps

case. This suggests that the small displacement assumption

has little effect on increasing the strain amplitude and

frequency errors as the strain is increased. However, this

suggestion is obviously limited to this particular experiment

and needs to be investigated for other values of excitation

current.

The assumptions of single element modelling, of small

displacement theory, and of no axial deformation are made

for analytical expediency and for computational efficiency.

The validity for making these assumptions should be reviewed

in light of these experimental results.

The importance of correct modelling of the hydraulic

dynamics was emphasized when the interaction of the hydraulic

actuation, the gravitational force, and the arm movement from

the vertical plane created a serious resonance problem. This

phenomenom was observed during the theoretical strain simula-

tions and resulted in serious instability after approximately

one second of motion. Investigation revealed that the hydrau-

lic damping was improperly modeled. The resonance was

eliminated after a modification to the damping was made.
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V. CONTROL OF FLEXIBLE MANIPULATORS

The advantages to employing flexible manipulators is

well documented in the literature [Ref. 16: pp. 101, 102].

However, flexible manipulator usage in industry has been

minimal principally as a result of the difficulty to control

the flexible manipulator end-effector [Ref. 3: p. 12093

There has been considerable research recently in the

development of flexible manipulator control strategies

using state-space model techniques. A brief survey of this

research follows.

Cannon and Schmitz [Ref. 1] introduced the concept of

end-point position feedback for use in controlling flexible

manipulators. The end-effector position was sensed and was

fed back to the controller for subsequent determination of

the control action required by the joint actuators. Use of

end-point position feedback would increase the response speed

and would allow for the use of lightweight flexible manipula-

tors. Techniques for determining the position of the

manipulator end-point were reviewed in the Experimental

Approach chapter.

Cannon and Schmitz (Ref. 71 utilized a modal approach

with a Lagrangian formulation to model a single-link flexible

arm. Both large motion rotation and small motion deformations

of the flexible arm were included in a single variable in the
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formulation. The state-space model resulted in a set of

decoupled differential equations where the states included

the rigid body mode and the flexible modes. Cannon and

Schmitz limited the state-space model to include only the

first three flexible modes. The flexible mode states

included contributions from large motion rotation as well

as small motion deformations. The joint actuator provided

4. direct control action to the large motion rotation of the

arm. Since the flexible mode states included coupling

between the large and small motions, the joint actuator

provided control action to the small motion deformations as

well. This ensured state controllability of the state space

model. Output controllability was ensured after determination

jof the arm-tip sensor and the joint-rate sensor measurement

vectors in the state-space output equation. The joint angle

and rate were measured with a potentiometer and a tachometer,

respectively. Since all flexible mode states were not

measurable, Cannon and Schmitz included an estimator in the

feedback control system to ensure that the system was observa-

ble. The Linear Quadratic Gaussian (LQG) approach was

utilized in the controller design. Experimental verification

of the feedback control system on a single-link flexible

manipulator demonstrated that stable and precise position

control of the end-effector was achieveable.

Book and Hastings IRef. 51 similarly utilized a Linear

Quadratic Regulator approach in designing a controller for a
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flexible manipulator. Their state-space model consisted of

a rigid body mode state and the first two flexible modes as

subsequent states. Their initial formulation of the dynamic

equations of motion included coupling between the rigid

body mode and the flexible modes, and ensured state control-

lability. Output controllability was ensured after determina-

tion of the strain gauge sensor, joint-position sensor, and

joint-rate sensor measurement vectors in the state-space

output equation. The modal deflections were measured from

strain gauge data. Observability was ensured by including

an estimator in the feedback control system to estimate the

two unmeasured modal velocities. Minimizing the first two

open-loop modal resonances in an experimental single-link

flexible manipulator confirmed the feedback control system's

ability to control the flexible modes. One significant

difference between the Book and Hastings model and the Cannon

and Schmitz model was that the former utilized flexible modes

corresponding to fixed-free beam vibrations whereas the latter

utilized pinned-free beam vibrations. The fixed-free flexible

mode model allows for a more accurate extension to the multi-

link manipulator since fixed link boundary conditions describe

the multi-link physical system.

Adaptation of Chang's Equivalent Rigid Link System flexible

model [Ref. 2] to the single-link manipulator provided another

alternative to the modal approach in defining state variables.

Defining both large motion rotations and small motion deforma-

tions as generalized coordinates in the Lagrang]ian formulation
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of the dynamic equations provided an easy extension for

these coordinates to become state variables. A comparison

of the state-space model to the ERLS non-linear model was

needed to determine the range of the applicability of the

linearized model away from the operating point. Comparison

of simulations of open loop large motion rotation, theta,

and small motion deformations indicated reasonable agreement

between the state-space model and the ERLS non-linear model

for approximately 1.5 sec. or 120 degrees after an input

torque of 5 N-m was applied.

The state space representation provided the input to

the NPS mainframe optimal feedback controls program CONTROLS,

subprogram OPTSYS, to design an LQR optimal controller.

Coupling between the large and small motions included in

the Lagrangian dynamic equation formulation ensured state

controllability. After assigning arbitrary identity matrices

for the output measurement matrix and the weighting matrices

for the quadratic performance index, an optimal feedback

gain control matrix was computed by the OPTSYS program.

Details of the linearization and state-space representation

of the ERLS model and the optimal feedback control design

are included in Appendix D. The definition of the output

measurement matrix assumed the feedback loop was closed

utilizing tip control. Simulation of the state-space model

closed-loop response to an initial condition of a 20 degree

rotation away from the zero degree operating point, a -.03

5-'
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meter tip deflection and a -.1 tip slope confirmed the

linear feedback control systems' ability to control the

state-space model of the single-link flexible arm. A graph

of the linear system closed-loop response of the large motion

rotation, theta, is plotted in Figure 13. This result gives

some confidence in the linear controller's ability to control

the non-linear model given small perturbations about the

operating point. However, simulation of the linear controller

with the non-linear model is necessary to investigate the

range of operation.

Utilizing the arm-tip deflection and slope as state

variables appears to be an improvement over the flexible

mode state variables since the former are more easily

measurable quantities. The need for an estimator in.the

feedback control system may be eliminated. However, addi-

tional comparison and investigation of the merits of both

approaches are necessary. From the results obtained from

other research it appears that control of a single-link

flexible manipulator is realizable. Extension of these

feedback control system approaches to multi-link flexible

manipulators is necessary if the advantages of flexible

manipulators is to be realized in practical industrial

applications.
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VI. CONCLUSIONS

The purpose of this research is to experimentally

validate the ERLS dynamic model. The validation of the

ERLS dynamic model is needed to ensure confidence of the

model for use in future design and control applications.

In this research, the ERLS model is tailored to a single-

link flexible arm having hydraulic actuation and moving in

a vertical plane. The vertical plane motion introduces

the effects of gravity. The investigation of the effects

of gravity on flexible manipulator movement allows for the

consideration of applications not limited to space usage.

The investigation of hydraulic power actuation allows for

the consideration of heavy load applications. The effects

and interactions of modelling the flexible arm with gravity

and the hydraulic actuation revealed the importance of

proper determination of parameters, specifically those

*affecting damping.

The acceptable tip position amplitude error despite the

single element modelling suggests the ERLS model's potential

usefulness in improving the tip position accuracy. This

potential benefit is significant considering the importance

of tip position accuracy as a criteria for evaluating robot

performance.
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The results of the validation indicated the theoretical

strain and position measurements are affected by the under-

lying assumptions of the ERLS model. Specifically, the FEM

single element modelling of the experimental arm results in

a more rigid description of the actual motion and gives

smaller amplitudes and higher frequencies. The results

indicate that as loading is applied to the single element

model the relative percentage errors of the first mode

amplitude and frequency increase slightly. As loading is

applied, the experimental arm becomes more flexible and the

single element model's performance in predicting the first

mode motion degrades. The results indicate though that the

single element model is better suited for predicting the

second mode frequency as the loading is increased. The

relative percentage errors for frequency indicate, however,

that the single element model better predicts the first mode

motion compared to the second mode motion.

The small displacement assumption results in additional

error to the theoretical strain and position predictions.

This error is most noticeable during the initial stages of

the X coordinate tip position motion and increases as the

loading increases. The small displacement assumption does

not appear to have much effect though,on the strain amplitude

and frequency errors as evidenced by the lack of any error

increase as the strain is increased by a larger hydraulic

excitation current. This conclusion needs to be investigated
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for other excitation current values. Other assumptions

are made on the values of certain mechanical and hydraulic

parameters, particularly inertia properties of the arm and

actuator. These assumed values undoubtedly contribute to

the error in the theoretical predictions. The agreements

and differences between the simulation and the experiment

in both arm-tip position and strain measurements provide a

valuable validation of the ERLS model. The experimental

data serves as a guideline to upgrade the dynamic model,

particularly in the validity of the underlying assumptions.
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VII. RECOMMENDATIONS

A principal goal in this research is to eventually use

the ERLS dynamic model in the design of a complete flexible

manipulator system. This system would include a multi-link

flexible manipulator and a servo control loop. Two areas of

research needed to achieve this goal are, therefore, the

control system design and the optimal design of a flexible

manipulator.

Continued simulation studies of a closed-loop system

having the controller design based on the ERLS model are

needed. Alternative control laws need to be investigated

for possible use in this application. Concurrent work is

needed on the continued validation of the ERLS dynamic model.

Specifically, the single element FEM modelling of deformations

should be extended to a multi-element model. Validation of

the arm and actuator inertia properties needs to be accom-

plished. The intent of the continued validation of the ERLS

dynamic model is to bring the theoretical arm motion into

closer agreement to the experimental arm motion. This

refinement of the dynamic model is useful for an effective

controller design based on the model. Additional techniques

for the acquisition of arm tip position need to be investiga-

ted and implemented. Specifically, sensors for arm tip

position need to be implemented in order to feedback position
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data to the controller for appropriate control action.

Alternatives for arm tip position sensors include accelero-

meters and optics. The controller design eventually needs

to be implemented in hardware and/or software and tested.

Extension of the controller design and implementation to

the multi-link case is eventually needed if the advantages

of flexible manipulators is to be realized in practical

industrial applications.

Once experimental validation is completed the ERLS

dynamic model will allow computer simulation for designing

a mechanical manipulator with a desired rigidity. Further

investigation is needed into the optimal design of a flexible

manipulator.

1 '



APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION FOR THE
EXPERIMENTAL, SINGLE-LINK, FLEXIBLE AR4

Given the large and small motions as generalized coordi-

nates, the following are the two sets of Lagrange equations

used to develop the equations of motion:

d/dt( KE/3e) - 3KE/a6 + 3PE/38 = F (A.1)

d/dt(;KE/3U) - 3KE/3U + 9PE/3U = 0 (A.2)

KE - kinetic energy

PE - potential energy

8 - large motion joint variable, theta

U - 2xl vector of small motion displacement and slope, v

and

F - generalized force for large motion, applied moment

The actual motion of the experimental arm is restricted

to lie in a vertical plane. The hydraulic actuator is

attached to the base of the arm. The load is attached to the

end of the arm. The large motion joint variable theta is the

angle measured between the ERLS link and the global coordi-

nate system horizontal axis.

The origin of the global coordinate system is the axis

of the hydraulic actuator, the base joint.

The horizontal and vertical axes of the global coordinate

system are parallel and perpendicular to the earth. The ERLS

link is parallel to the tangent of the experimental arm at the
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base joint. Figure A.1 shows the relationships between the

ERLS and the theoretical arm position. The vector of small

motion is limited to include only the transverse displacement,

v, and the slope, p, of the end of the arm. Axial deformation

and torsion are neglected in the model and are considered

insignificant in this application. The design of the experi-

mental arm to include two parallel flat bars jointed by a

series of transverse bridges makes the arm rigid in torsion.

Figure A.1 shows the two components of the vector of small

motion.

/

Figure A.1

- - - ERLS
_Theoretical Arm Position

X,Y Global Coordinate System
x,y Local Coordinate System
v Arm Tip Deflection

Arm Tip Slope

62



The kinetic energy of the system includes contributions

from the arm, the loading and the hydraulic actuator rotor.

The expressions utilized for the determination of the kinetic

energy of the system are as follows:

KE-arm = 1/2 i R (R)dv (A.3)

ARM
VOLUME

KE-load = 1/2 Tr i 1i R1T (Rl1)dV (A.4)

LOAD VOLUME
RrT

KE-rotor = 1/2 Tr f P r (Rr)dV (A.5)

ROTOR
VOLUME

Tr is the trace operation.

The global position vector of the arm is determined from

the following transformation:

R = W (r + D) (A.6)

W - the 3x3 transformation matrix and is solely a

function of theta

r - the 3xl local position vector of the arm measured

from the coordinate system whose origin is at the end of

the ERLS link. Figure A.1 shows the positive directions

for the local coordinate system.
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D - the 3xl deformation vector that only includes the

transverse displacement, v. In order to introduce the nodal

displacements at the arm tip as the sole deformation variables

substitution of the shape function matrix and a nodal dis-

placement vector is made for D. The derivation of this

substitution is shown in Appendix C.

p - the mass density of the arm, steel

The global position vector of the load is determined from

the following transformation:

R1 =W D1 r1  (A.7)

D - the 3x3 transformation matrix due to the local

-deformations of the arm tip

rI - the 3xl local position vector for the load

Pi - the mass density of the load, pteel

The global position vector of the hydraulic actuator

rotor is determined from the following transformation:

R = A r (A.8)r r r

A - the 3x3 transformation matrix due to the large

motion rotation of the rotor

r r - the 3xl local position vector for the rotor

- the mass density of the actuator rotor, aluminum

The following definitions for the inertia terms are

utilized to simplify the computations and the resultant

expressions in the equations of motion:
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= f i r r1T dv - the 3x3 inertia matrix of the load

LOAD (A. 9)
VOLUME

I p r r T dv - the 3x3 inertia matrix of the
J actuator rotor (A.10)

ROTOR
VOLUME

I122(wT Wr) = T i T w r 1 dv (A.I1)

LINK
VOLUME

I122(W T,W) f T wIT  W i dv (A.12)

LINK
VOLUME

I121(wT W) J j W We r dv (A.13)

LINK
VOLUME

I111(We T, W f ti rT WeT We r dv (A.14)

LINK
VOLUME

I112(WeT, W) = p p rT W T Wq dv (A.15)

LINK
VOLUME

I122(W T , W) f iT w T w dv (A.16)

LINK
VOLUME
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II22(WT We) = T W T W, i dv (A. 17)

LINK
VOLUME

Iyy = j y dv (A.18)

LOAD
VOLUME

Ixx = f " 1 x 2 dv (A. 19)

LOAD
VOLUME

Computation of the preceding link inertia matrices require

utilization, of the 3x2 link shape matrix I' the 3xl link

local position vector r, and various combinations of the 3x3

transformation matrix W. The expression We implies a deriva-

tive with respect to the large motion joint variable, theta.

The expression Wr results from a simplification of the second

time derivative of the transformation matrix W and is termed a

residual acceleration. Further details on the derivation of

these expressions can be found in Reference 2 and a listing of

these matrices is found in Appendix B in the computer coding.

The potential energy of the system includes contributions

from the strain energy of the arm due to deformation and from

the gravitational energy of the load and the arm. The

expressions utilized for the determinaticn of the potential

energy of the system are as follows:

PEd = 1/2 { E I (V'') 2 dx - potential energy due to
L deformation (A.20)LINK

LENGTH
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S T
PE = - r g dv - potential energy of the link

g due to gravitation (A.21)
LINK
VOLUME

PElg j - ,i rl T g dv - potential energy of the load
due to gravitation (A.22)

LOAD
VOLUME

E I - the flexural rigidity in the z direction, or

perpendicular to the plane of motion.

v'' - the second derivative of the transverse

*, displacement v with respect to the x local coordinate

direction. In order to introduce the nodal displacements

at the arm tip as deformation variables substitution of the

second derivative of the shape function matrix with respect

to the x coordinate direction and a nodal displacement

vector is made for v''. The derivation of this substitution

N is shown in Appendix C.

g - the gravitational acceleration vector

The following definitions are utilized to simplify the

computations and the resultant expressions in the equations

of motion:

K FT C 7 dx - the 2x2 stiffness matrix (A.23)

LINK
LENGTH

H r T dv - the link first moment of inertia

vector (A.24)
L£::K

VOLUME
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H 21 dv- the link shape matrix first
moment of inertia vector (A.25)

LINK
VOLUME

H 41 rl T dv -the load first moment of inertia
vector (A.26)

LOAD
VOLUME

r - the second derivative of the shape function matrix.

C - the 3x3 flexural rigidity matrix including only

E I
zz

Substitution of the expressions for kinetic energy and

potential energy into the Lagrange equations and after much

computation and simplification results in the following two

non-linear, coupled, second-order, ordinary, differential

equations for the large and small motions of the single-link

flexible arm:

MQQ 0 + MQN U = FQ (A.27)

MNQ 6 + MNN U + KN U = FN (A.28)

The following are definitions for the coefficients:

T T T u
MQQ = Illl(WT , W + U I122(W T W ) U + Trace(W 9 D I1
TwsT+ I T) (A. 29)

D1 T  + Ar Ir Ar

MQN = Ill 2 (W1, W) + ((M, L + M ) (M. L + I + Iy))X ' x X X

(A. 30)
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L is the link length. Mx is the first moment of the load

with respect to the local coordinate y axis. M1 is the mass

of the load.

FQ= 2. UT I122(W T, W) 0 + H11 weT g + UT H21 WeT g-

SD + 2. W D I W +A I A )
Trace (WeD 1 Il 1 r e 1 1 1 re r rr

H41 D1T WeT g + T (A.31)

T is the externally applied torque. Arr results from a

simplification of the second time derivative of the transfor-

mation matrix A and is termed a residual acceleration. U
r

is the 2x1 nodal displacement vector containing the link tip

deflection, v(O), and slope, p(O). The expression Are

implies a derivative with respect to the large motion joint

variable, theta.

T wT) Tae(c 1 ID2T wT)
MNQ = (Trace (WeD 1 Il DT W), Trace (WD I D T W))

+ Il 2 1(wT, W0 ) (A.32)

DII and DI2 are the derivatives of the arm tip

deformation transformation matrix with respect to each nodal

displacement, deflection and slope, respectively.

T L 0 v(0)

MIN = I1 2 2 (WT W) + (A. 33)

0 I 0xx (0)
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v(O) and (O) are arm tip deflection and slope

accelerations respectively.

KN = K11 + I122(W T , Wr) (A.34)

FN = H2 1 W T g - (Trace(Wr D1 1 D1 1T WT + 2. W D1 T

WT), Trace(W r D1 1 D2 T wT + 2. 1 D2 T T

+ (H4 1 DT wT g, H4 1 D1 2T wT g) (A.35)

The numerical values utilized for the experimental

flexible arm system variables are listed in Appendix B and

are in SI units.
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APPENDIX B

LISTING OF THE FORTRAN CODING UTILIZED IN SOLVING
THE DYNAMIC EQUATIONS OF MOTION FOR THE EXPERIMENTAL

SINGLE-LINK FLEXIBLE ARM

SIMULATION OF SINGLE LINK FLEXIBLE MANIPULATOR DYNAMICS

S THIS PROGRAM SOLVES THE ERLS FLEXIBLE MANIPULATOR DYNAMICS FOR A
S SINGLE LINK EXPERIMENTAL ARM. THE EXPERIMENTAL ARM PARAMETERS ARE
S INPUTTED AND THE HYDRAULIC ACTUATION DYNAMICS ARE INCLUDED IN THE
S SIMULATION. THE INPUT IS THE CURRENT TO THE SERVOVALVE MOUNTED ON
S THE HYDRAULIC ACTUATOR AND THE OUTPUT IS THE POSITION OF THE ARM
S TIP IN THE GLOBAL REFERENCE SYSTEM. THE CODING CONSISTS OF A MAIN
S PROGRAM AND FIFTEEN SUBROUTINES AND ARE DESCRIBED BELOW.

S THE FOLLOWING PARAMETERS ARE DEFINEDt
I1.A-EFFECTIVE CROSS-SECTIONAL AREA OF FLEXIBLE ARM
Z.ARRDD-3X3 SECOND TIME DERIVATIVE OF ROTOR RESIDUAL ACCELERATION

MATRIX
S 3.ARTH-3X3 ROTOR TRANSFORMATION MATRIX DIFFERENTIATED WITH RESPECT

TO THETA
S '.BE-EFFECTIVE BULK MODULUS OF FLUID
S 5.BIGF-3X1 RIGHT-HAND SIDE VECTOR FOR LARGE AND SMALL MOTION

ACCELERATIONS
S 6.BIGM-3X3 MATRIX OF LARGE AND SMALL MOTION ACCELERATION

COEFFICIENTS
S 7.CTM-TOTAL LEAKAGE COEFFICIENT OF THE ACTUATOR
S 8.DEFM-DISPLACEMENT DEFORMATION VARIABLE
S 9.DEFMD-TIME DERIVATIVE OF DISPLACEMENT DEFORMATION VARIABLE

I lO.DIFF,QERRQERR1,FACTOR-DUMMY VARIABLES
l1.DL1-3X3 DEFORMATION MATRIX

S 12.DLll-3X3 DEFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO THE
DISPLACEMENT DEFORMATION VARIABLE

S 13.DLIZ-3X3 DEFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO THE
SLOPE DEFORMATION VARIABLE

S 14.DLlD-3X3 FIRST TIME DERIVATIVE OF DEFORMATION MATRIX
S 15.DM-ACTUATOR DISPLACEMENT
S 16.E-MODULUS OF ELASTICITY OF STEEL
W17.FN-2Xl RIGHT-HAND SIDE VECTOR FOR SMALL MOTION ACCELERATIONS
w 18.FQ-RIGHT-HAND SIDE FOR LARGE MOTION ACCELERATIONS
S 19.G-3X1 GRAVITATIONAL ACCELERATION VECTOR
S 20.GPOS-3XI GLOBAL POSITION VECTOR FOR ARM TIP
S 21.Hll-1X3 LINK FIRST MOMENT OF INERTIA VECTOR
_ 22.H21-2X3 LINK SHAPE MATRIX FIRST MOMENT OF INERTIAVECTOR
* 23.H'l-1X3 LOAD FIRST MOMENT OF INERTIA VECTOR
* 24.KCE-TOTAL FLOW PRESSURE COEFFICIENT
* 25.PL-LOAD HYDRAULIC PRESSURE DROP
* 26.PS-HYDRAULIC SUPPLY PRESSURE
* 27.QL-FLOW DELIVERED FROM THE SERVOVALVE
* 28.SLOP-SLOPE DEFORMATION VARIABLE
A 29.SLOPD-TIME DERIVATIVE OF SLOPE DEFORMATION VARIABLE
* 30.SOL-3XI VECTOR OF LARGE AND SMALL MOTION ACCELERATIONS

A 31.TE-TORQUE EFFICIENCY
S 32.TH-LARGE MOTION POSITION VARIABLE

A 33.THD-TIME DERIVATIVE OF LARGE MOTION VARIABLE
A 34.TORQUE-APPLIED TORQUE BY ACTUATOR
* 35.U-2X1 ARM TIP DEFORMATION VECTOR INCLUDING DISPLACEMENT AND SLOPE
A 36.UD-2X1 ARM TIP DEFORMATION VECTOR DIFFERENTIATED WITH RESPECT TO
* TIME
* 37.VT-TOTAL COMPRESSED VOLUME INCLUDING ACTUATOR LINES AND CHAMBERS
1 38.W-3X3 LINK TRANSFORMATION MATRIX
* 39.HD-3X3 FIRST TIME DERIVATIVE OF LINK TRANSFORMATION MATRIX
A 40.WRDD-3X3 SECOND TIME DERIVATIVE OF LINK RESIDUAL ACCELERATION
* MATRIX
* 41.WTH-3X3 TRANSFORMATION MATRIX DIFFERENTIATED WITH RESPECT TO

THETA
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VALVE
~42.XIINP-CURRENT INPUT EQUAL TO INITIAL AND FRACTIONAL AMOUNTS
~43.XIL-3X3 INERTIA MATRIX OF THE LOAD
S '4.XIO-INITIAL INPUT CURRENT TO SERVOVALVE
S 45.XIR-3X3 ROTOR INERTIA MATRIX
~46.XISTEP-STEP INPUT OF FRACTIONAL AMOUNT OF INPUT CURRENT
S 47.XK1l-2X2 PARTIAL LINK STIFFNESS MATRIX
S '8.XKN-2X2 LINK STIFFNESS MATRIX
S '9.XKV-SERVOVALVE SIZING CONSTANT

50.XLL-LENGTH OF FLEXIBLE ARM
S 51.XML-MASS OF LOAD

52.XMNN-2X2 COEFFICIENT MATRIX OF SMALL MOTION ACCELERATIONS IN THE
SMALL MOTION DYNAMIC EQUATIONS

53.XMNQ-2X1 COEFFICIENT VECTOR OF LARGE MOTION ACCELERATIONS IN THE
SMALL MOTION DYNAMIC EQUATIONS

54.XMQN-1X2 COEFFICIENT VECTOR OF SMALL MOTION ACCELERATIONS IN THE
LARGE MOTION DYNAMICS EQUATION

S 55.XMQQ-COEFFICIENT OF LARGE MOTION ACCELERATION IN THE LARGE MOTION
DYNAMICS EQUATION

S 56.XMQQP-2X2 DUMMY MATRIX FOR USE IN FORMULATING THE EQUATIONS OF
MOTION

57.XMR-MASS OF ACTUATOR ROTOR
58.XMU-MASS DENSITY OF STEEL FLEXIBLE ARM

S 59.XMX-FIRST MOMENT OF LOAD WITH RESPECT TO THE LOCAL COORDINATE-
Y AXIS

S 60.XXI-VARIABLE REPRESENTING INERTIA-LIKE LOAD PROPERTY
S 61.YYI-VARIABLE REPRESENTING INERTIA-LIKE LOAD PROPERTY
S62.ZI-AREA MOMENT OF INERTIA OF FLEXIBLE ARM

INITIAL

INITIAL VALUES OF PARAMETERS ARE INPUTTED VIA XINIT SUBROUTINE

/ REAL8 U(2,1),XMQQ(1),XMQQP(2.2),DL1(3,3),WTH(3,3),ARTH(3,3),
/ tXIR(3,3),XMQN(1,2),UD(2,1),Hll(1,3),G(3,1),H21(2,3),
/ tWRDD(3,3),DL1D(3,3),WD(3,3),ARRDD(3,3),H41(1,3),XK11(2,2),
/ tDL12(3,3),XMNQ(Z,1),W(3,3),XMNN(2,Z),XKN(2,2),FN(2,1),BIGM(3,3),
/ tBIGF(3,1),XIL(3,3),DL1l(3,3),DEFMD(l),SOL(3),THD(1),SLOP(1),
/ #SLOPD(1),A(1),E(1),ZI(1),XXI(1).YYI(1),FQ(1),GPOS(3),XITH(1),
/ IXMU(1),XLL(l),XML(1),XMR(1),XMX(1),TH(1),TORQUE(1),DEFM(1),
/ IPS(1),XIFRAC(1),XIO(1),KCE(1),VT(1),BE(l),DM(l),XKV(1),TE(l),
/ #QL(1),PL(1),DIFF(l),XIINP(1),QERR1(1),QERR(l),FACTOR(1),XISTEP(l)

FIXED I
NOSORT
SYSTEM DPINTG

4TH ORDER RUNGE-KUTTA DOUBLE-PRECISION INTEGRATION

METHOD RKSDP

INITIALIZATION SUBROUTINE

CALL XINIT(THTHD,DEFM,DEFMD,SLOP,SLOPDVOPOSO,A,XML,XMU,...
XLL,XMR,E,ZI,PS,XIFRAC,XIOCIM,VT,BE,DM,XKV,TE,QL,...
PL,PLIC)

DYNAMIC

COEFFICIENTS FOR BOTH LARGE AND SMALL MOTION ACCELERATIONS
AND THE RIGHT-HAND SIDES ARE COMPUTED IN THE FOLLOWING
SUBROUTINES. ALSO,THE HYDRAULIC DYNAMICS ARE INCLUDED
IN THE MAIN PROGRAM.

NOSORT
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* HYDRAULIC DYNAMICS

XISrEP(1D=XIFRAC(1D*STEP(o. 0)
XIINP( 1 )XI0(1)+XISTEP(l)
IF(PL(1).GT.PS(1)) GO TO 2
GO TO 3

2 PL(1)=PS(l)
3 QERR1C1)=(XIINP(1)*XKV(1)*DSQRT(PS(l)-PL1) ) )-(DM(1)*THD(l))

QERR(1)=QERR1(1)/KCE(l)
DIFF(1 )QERR( 1)-PL(l)
FACTOR(1)=VT(1)/(4.ODOEBE(1)3EKCE(l))
DIFF1(1)=DIFF(l)
SORT
PL1=INTGRL(PLIC, DIFFi, 1)
NOSORT

TORQUE(1)=TE(1)*PL(1)3EDM(l)

* MATRIX AND VECTOR FORMULATION SUBROUTINE

CALL FORM(W,WTH,WD.DLl,DL1D,XIL,XIR,ARTH,WRDD,ARRDD,U,UD,..
XMQQP,G. Hil, H2l,Dll, DL1Z, H41, XK11 ,A,XIIU,XML,XLL,TH,THDI .
DEFM,DEFMD,SLOPSLOPD,E,ZI,XMR,XMX,YYI,XXI)

* COEFFICIENT OF LARGE MOTION ACCELERATION IN LARGE MOTION DYNAMICS
* EQUATION SUBROUTINE

CALL XLMMQQ(XMQQP U,XMQQP, Dii,WTHARTH,XIL ,XIR,A,XMU, TH,DEFM, SLOP)

* COEFFICIENTS OF SMALL MOTION ACCELERATIONS IN LARGE MOTION DYNAMICS
* EQUATION SUBROUTINE

CALL XLMMQN(XMQN,A,XMU,XML.XLL,XMX,SLOPDEFM,YYI ,XXI)

* RIGHT-HAND SIDE FOR LARGE MOTION DYNAMICS EQUATION SUBROUTINE

CALL XLMFQ(FQ,U,XMQQPDL1,WTH,ARTH,XIL,XIR,UD,Hll,G,H21,.WRDDI .
DLI D,WD,ARRDD,H'1,TH,THDDEFM,DEFMD,SLOP,SLOPD,A,XMU,XML,XLL,..
TIR~QUE)

* LINK STIFFNESS MATRIX SUBROUTINE

CALL SMKN(XKN,XK11,XMQQP,A,XMU,THD)

* COEFFICIENTS OF LARGE MOTION ACCELERATION IN SMALL MOTIONJ
* DYNAMICS EQUATIONS SUBROUTINE

CALL SMMN$Q(XMNQ, DLl,WTH,XIL, DLll,DLI2,W, TH. DEFM,SLOPA,XMU)

* RIGHT-HAND SIDE OF SMALL MOTION DYNAMICS EQUATICNS SUBROUTINE

CALL SMFN(FN.,H21,W,G,NRDDDL1,XIL, DL1l, DL12,WD,DLID,H41,TH,..
THD, DEFM. DEFMlD, SLOP, SLOPD)

* COEFFICIENTS OF SMALL MOTION ACCELERATIONS IN SMALL MOTION DYNAMICS
* EQUATIONS SUBROUTINE

* CALL SMMNN(XMNN,XMQQP,XML,A,XMU,XXI,YYI,XMX)
* ACCELERATION COEFFICIENTS MATRIX AND RIGHT-HAND SIDE VECTOR

d * FORMULATION SUBROUTINE

CALL BIGFOR(B'GM,BIGF,XMQQ,XMQN,FQ,XMNQ,XMN4N,XKN,FN,U)

* LIN4EAR EQUATION SOLVER FOR ACCELERATIONS SUBROUTINE

CALL XLEQ(BIGM.BIGF,SOL)

* TRANSFORMATION FROM LOCAL COORDINATE TO GLOBAL COORDINATE TIP
* POSITION SUBROUTINE

* CALL GLOB(GPOS,L4,DEFM)
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CALL GLOB(GPOS,W,DEFM)

INTEGRATE ACCELERATIONS AND THEN VELOCITY TO GET LARGE MOTION
ANGULAR POSITION AND SMALL MOTION,LOCAL COORDINATE,TIP POSITION
Do 5 I*1,3
SOL1(I)=SOL(I)

5 CONTINUE
SORT
VELzINTGRL(VO,SOL1,3)
NOSORT
THD(1)=VEL(l)
DEFMDC1)=VEL(2)
SL OPOC1)=V EL (3)
DO 10 I=1,3
VEL1(I)=VEL(I)

10 CONTINUE
SORT
POSxINTGRL(POSO,VEL1, 3)
N OSOR T
TH(1)=POS(l)
DEFMC1)=PGS(2)
SLOP( 1 )POS( 3)
AC1=ZZRND(sOL1(1))
ACZ=ZZRND(SOL1(Z))
AC3=ZZRND(SOL1(3))
VE1=ZZRNDCVEL(l))
VEZ=ZZRND(VEL(2))
VE3zZZRND(VEL(3))
POI=ZZRND(POS( 1))
POZ=ZZRND(POS(Z))
PO3=ZZRND(POS(3))
XPOS:ZZRNDCGPOS(Z))
YPOS=ZZRNDCGPOSC 3))
TORK:ZZRND( TORQUE( 1))
LPD=ZZRND(PL(l))

OUTPUT GLOBAL COORDINATE TIP POSITION

TERMINAL
OUTPUT XPOS
OUTPUT YPOS
OUTPUT TIME,XPOS
PAGE XYPLOT
LABEL X-POSITION (LOAD=.4Z33 KG I=1.02MA)
OUTPUT TIME,YPOS
PAGE XYPLOT
LABEL Y-POSITION (LOADz.4Z33 KG ,I=1.02MA)
TIMER FINTIM =1.5 , OUTDEL = 0.01 , DELMIN S5.OE-8

END
ST OP
C
C
C LISTING OF SUBROUTINES
C
C

SUBROUTINE XINIT(TH,TMD,DEFM,DEFMD,SLOP,SLOPD,VO,POSO,A,ML,MU,LL,
#MR,E,ZI,PS,IFRAC, IO,CTM,VT,BE,DM,KV,TE,QL,PL,PLIC)
REAL3M8 VO(3) ,POSO(3) ,ML,MU, LL,MR,TH,THD, DEFM, DEFMD,SLOP,SLOPD,
#A,E,ZI,ITORQPS,IFRAC,IO,CTM,VT,BE,DM,KV,TE,QLPL,PLIC,IMAX,
ITORQ= 27.89303003D+00
DM=6 .22710-05
TE=. 9D+00
PL:ITORQ/(DMNTE)
PLIC=PL
CTM=3 .7064772D-13
QI :CTM3EPL
KV=2 .4029630-09
PS:1 .378880+07
IO=QL/(KV*DSQRTCPS-PL))
IMAX=1O. 0+00
IFRAC . 5D+00*( IMAX-10)

74

Jll N I lLJI A 1



BE=690 .D6
A-6 .17795D-04
ML=.4233000 0000000
MU=7861 .05000000000000
LL=0.99850000000000
MR:9. 0001145100 00 00
E=2. OD11
ZI=4. 065D-10
VO( 1) :0 .000000000000000
VOC 2) 0 .00 000 0000 000 000
VO( 3) =0 .0000 00000000 000
POSO(i) -0 .0000 000000 0000
POSG(Z):-.07804116400000
POSO(3)=- .09875534300000
TH=POSO(1)
THD=VO( )
DEFM=P0SO(Z)
DEFMD=VO( 2)
SLOP=POSO( 3)
SLOPD=VO( 3)
RETURN
END

C
C
C

SUBROUTINE FaRM(W,WTH,WD, DL1,DL1D,XIL,XIR,ARTH,WRDD,ARRDD,U,UD,
tXMQQP,G,Hll,HZ1,DL11,DL12,H41,XK11,A,MU,ML,LL,TH,THD,DEFM,DEFMD,
#SLOPSLOPD, E,ZI,MR,MX,YYI,XXI)
REAL3E8 NC3,3) ,WTH(3,3) ,WD(3,3) ,DL1(3,3) ,DL1D(3,3) ,XIL(3,3)
REAL*8 XIR(3,3),ARTH(3,3),WRDD(3,3) ,ARRDD(3,3),U(2, 1),UD(2. 1)
REAL3E8 XMQQP(2,2),G(3,1) ,H11(1,3),HZI(2,3),DL11(3,3),DL1Z(3,3)
REAL*8 141(1,3) ,XK11(2,2) ,MU,ML,LL,MR,MX,TH
REAL3E8 THD,DEFM,DEFMD,SLOP,SLOPD,XXIYYI,A,E,ZI
W1, 1)=1. 00000000000000

W(1,2)=0.00000000000000
W1, 3)0. 00000000000000

W(2, 1)LL3EDCOS(TH)
N 2, 2) =DCOS( TH)
W(2, 3)=-DSIN(TH)
W(3 1)=LL*DSIN(THi)
W(3,2)=DSIN(TH)
N 3, 3)=DCOS( TH)
WTH(1,1)=0. 00000000000000
WTH(1,2)=0 .00000000800000
WTH(1,3)=0. 00000000000000
NTH(Z, 1 )=LL3EDSI14(TH)
WTHCZ,2)=-DSIN(TH)
WTH(2,3)=-DCOS(TH)
WTH(3, 1)=LL*DCOS(TH)
WrH(3,2):DCOSCTH)
WTH(3, 3)=-DSIN(TH)
ND(1, 1)=0. 00000000000000
14D(1,2)=:0.00000000000000
NO(1, 3 ) 0 .00000000000000
ND(2, 1 )-LL3EDSINCTH)3ETHD
WD(2,2)=-DSIN(TH)*ETHD
WD(2, 3)=-DCOS(TH)3ETHD
HD(3, 1)zLL3DCOS(TH)3ETHD
WD( 3,2)=:DCOS( THN 3THD
WD(3, 3)=-DSIN(TH)3(THD
DL1(1,1)=1 .00000000000000
D11(1,Z)=0 .00000000000000
DL1(1,3)=0 .00000000000000
D1C2, 1)=0.00000000000000
DL1(2,2)=1 .00000000000000
OLIC 2, 3) -SL OP
011(3, 1)=DEFM
D0113,2)=SLOP
DL1(3,3)=1 .00000000000000
DL1D(1,1)=0. 00000000000000
DL1D 1, 2)=0.00000000000000
D110(1, 3)=0 .00000000000000
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DLlD(2, 1)20.01000OOOOOOOOOO
DL1D(2,Z)=0.0000000000000
DLID(2,3)2-SLOPD
DL1D(3. 1)=DEFMD
DL 1D(3, Z)=SL1OPD
DLlD(3,3)=0. 00000000000000
XIL(1,1)2t1L
XIL(1,2)zO .00067141800000
XILC1,3)=.00000000000000
XIL(Z, 1)=0.00067141800000
XIL(2,2)=1 .422D-06
XIL(2,3)=0 .00000000000000
XIL(3,1)=.00000000000000
XIL(3.Z)=0.00000000000000
XIL(3,3)=5.97754D-04
MX .00067141800000
XXI=1 .422D-06
YYI=5.97754D-04
XIR(11)=MR
XIR(1,2)=0. 000000000000000
XIR(1,3)0. 000000000000000
XIR(Z, 1)=0. 000000000000000
XIR(2, 2)2 .027467130000000
XIR(2,3)=0. 000000000000000
XIR(3,1)=0. 000000000000000
XIR(3,Z)=0. 000000000000000
XIR(3,3)x. 02746713000000
ARTI(1,1)=0. 00000000000000
ARTH(1,2)=0.00000000000000
ARTII(1.,3)=0. 00000000000000
ARTH(2,1)=0. 00000000000000
ARTH(Z,Z)=-DSIN(TH)
ARTH(2,3)=-DCOS(TH)
ARTH(3, 1)0. 00000000000000
ARTH(3,2)=DCOS(TH)
ARTH(3, 3)=-DSIN(TH)
WRDD(1, 1)=0.00000000000000
WRDD( 1, 2)=0 .0000 000000 0000
WRDD(1 ,3)=0.00000000000000
WRDD(Z, 1 )-LLEDC05(TH)3E(THD**2)
WRDD(2, Z)-DCOSTH)*CTHDE*2)
WRDD(2, 3)=DSIN(TH)(THD**~2)
WRDD(3, 1)=LL*DSIN(TH)E(THD**2)
WRDD(3. 2)-DSIN(T.H)*(THD3*2)
WRDD(3, 3)=-DCOS(TH)3E(THD**2)
ARRDD(1,1)=0. 00000000000000
ARRDD( 1,2)=0.00000000000000
ARRDD(1,3)=0. 00000000000000
ARRDD(2,1)=0 .00000000000000
ARRDD(2,2)=-DCS(TH)(THD**~2)
ARRDD(2, 3)=DSIN(TH)(THD**32)
ARRDD(3,1)=0. 00000000000000
ARRDD(3,2)=-DSIN(TH)(THD3*2)
ARRDD(3, 3):-DC0S(TH)E(THD*3E2)
U(i, 1)=DEF4
U(2,1)=SLOP
UD(1,1)=DEFMD
UD(2,1)=SLOPD
XMQQP(1,1): .37142860000000
XMQQP(1,2)=-. 05238100000000
XMQQP( 2,1)=-. 0523810 0000000
XMQQP(2,2)= .00952380000000
G(1, 1)20. 00000000000000
G(2,1)=0. 00000000000000
G(3, 1)=-9.80660000000000
H11(1, 1)=4.85651900000000
H11( 1,2)=-2.42825869300000
Hl1(1,3)=0. 00000000000000
H21(1,1)=0. 00000000000000
H21( 1,2)=0 .00000000000000
H21(1,3)=AXMU*( .50000000000000)
H21(2, 1)=0.00000000000000
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H21(2,2)=0 .00000000000000
H21(2,3)AMUE(-. 083333.33333333)
DO 50 I=1,3
DO 60 J=1,3
DL11(I,J)=0. 00000000000000
D112(I,J)O .00000000000000

60 CONTINUE
50 CONTINUE

DL11(3,1)=1.OO000000000000
DL12(Z,3)=-1 .00000000000000
DL1Z(3,2)=1 .00000000000000
H41(1,1)=ML
H41(1,2)=0.000671418000000
H41(1,3)=.000000000000000000
XK11Cl,1)=1Z. UOOOOO0OQ03E*EZI
XK11(1,Z):-6 . OOOOOO00OO*EEZI
XK11(2, 1)=-6 . 00OOO000OO3E3ZI
XK11(2,Z):4. 00O00O0000OE3(ZI
RETURN
END

C
C
C

SUBROUTINE XLMMQQ(MQQU,XMQQP, DL1,WTH,ARTHXIL,XIR,A,MU,TM, DEFM,
#SLOP)
REAL3I8 MQQ,UT(1,2) ,P(1,Z),DLlT(3,3),WTHT(3,3) ,ARTHT(3,3),Pl(3,3)
REAL*E8 P2(3,3) ,P3(3,3),P4(3,3) ,P5(3,3),P6(3,3) .P7(3,3) ,MU
REAL*8 U(2,1),XMQQP(2,2) ,DLI(3,3) ,WTH(3,3),ARTH(3,3),XIL(3,3)
REAL3*8 XIR(3.3),A,TH,DEFI4,SLOP,SPTP
M=2
L:1
N=3
MQQ=0.00000000000000
CALL TRAt4S(U,UT,M,L)
CALL MATMUL(UT,XMQQP,L,M,M,P)
CALL MATMUL(P,U,L..ML,SP)
CALL TRANS(DL1,DLIT,N,N)
CALL TRANS(ARTH,ARTHT,NN)
CALL TRANS(WTH,WTHT,N,N)
CALL MATMULCWTH,DL1,N,N,N,P1)
CALL MATMUL(Pl,XIL,N,N,N,P2)
CALL MATMUL(PZ,DL1T,N,N,N,P3)
CALL MATMUL(P3,WTHT,N,NN,P4)
CALL MATMUL(ARTH,XIR,N,N,N,P5)
CALL MATMUL(P5,ARTHT,N,N,NP6)
CALL MATADD(P4,P6,N,N,P7)
CALL TRACE(P7,N,TP)
MQQ=((l./3.)*A*MU) + (A*MU*SP) +TP
RETURN
END

C
C
C

SUBROUTINE XLMMQN(XMQN,A,MU,ML, LL,MX,SLOP,DEFM,YYI,XXI)
REAL3E8 XMQN(1,2) ,MU,ML,LL,MX,A,SLOP, DEFM.YYI,XXI
XMQN(1,1)(A*EMUE( .350000000O))+(MLxLL)+MX
XMQN(1,2)=(A*MU*(-.0500000000OOOO))+(MX*LL)+YYI+XXI
RETURN
END

C
C
C

SUBROUTINE XLMFQ(FQ,U,XMQQP,DL1,W)TH,ARTH,XIL ,XIR..UD,Hll,G,H21,
IWRDD,DL1D,WD,ARRDD,H41,TH,THD,DEFM,DEFMD,SLOP,SLQPD,A,MU,MLLL,
#TORQUE)

REAL*8 P6(3,3),P7C3.3),P8(3,3),P9(3,3),P1O(3,3) ,P11(1,3) .P12(1,3)
REAL*8 FPFH(3,3),FHP(3,3), FPT(3,3) ,DL1DT(3, 3) ,WDT(3, 3) ,ARRDDT(3,3)
REAL)*8 UT(1,2),DL1T(3,3),WRDDT(3,3) ,FPF(3,3) ,FPS(3,3) ,WTHT(3.3)
REALM8 U(2,1) .XMQQP(2,2) ,DL1(3,3) ,NTH(3,3) ,ARTH(3,3) .XIL(3,3)
REAL*8 XIR(3,3),UD(2,1LH1L(I,3),G(3, 1),H21CZ,3),I-IRDD(3,3)
REALW(8 DLlD(3,3),WD(3,3),ARRDD(3,3),H41(1,3) ,MU,LL,ML
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REAL*8 A,TORQUE,FQ,.TH,THD,DEFM,DEFMD,SLOP,,SLOPD
REAL3E8 FP,SP,TP,TFP,FTHP
M- 2
L~l
N=3
CALL TRANS(U,UT.M,L)
DO 10 I=1,2
DO 20 J=1,Z
FQP(I.J )2XMQQP(I,J)*THD

20 CONTINUE
10 CONTINUE

CALL MATMUL(UT,FQP,L,M.MP)
CALL MATMUL(P,UD,L,M. L,FP)
CALL TRAIIS(WTH.WTHT,N,N)
CALL MATMUL(Hl1,WTHTL..N,N,Pl)
CALL MATMUL(Pl,G,L,N,L,SP)
CALL MATrUL(UT,H21,L,M.N,P2)
CALL MATMUL(PZ,WTHT,L,N,N,P3)
CALL MATMUL(P3,G,L.NL,TP)
CALL TRANS(DL1,DLlT,N,N)
CALL TRANS(WRDD,WRDDT,N,N)
CALL MATMUL(WTH,DLI,N,N,N,P4)
CALL MATMUL(P4,XIL,N,N,N,P5)
CALL MATMUL(PS,DL1T..N,N,N,P6)
CALL MATMUL(P6,NRDDT,N,N,N,FPF)
CALL TRANS(DLlD,DLlDT,NN)
CALL TRANS(WD,WDT,N,N)
CALL MATMULCWTH,DL1,N,N,N,P7)
CALL MATMULCP7,XIL,N,N,N,P8)
CALL MATMUL(P8,DL1DT,N,N,NP9)
CALL MATMUL(P9,WDT,N,N,N,FPS)
CALL TRANS(ARRDDARRDDT,N,N)
CALL !ATMUL(ARTH,XIRN,N,N,P1O)
CALL MATMUL(PIO,ARRDDT,NN,N,FPT)
DO 30 I=1,3
DO 40 J=1,3
FPS(I,J)=FPS(I,J)*2.

40 CONTINUE
30 CONTINUE

CALL MATADD(FPF,FPS,N,N,FPFH)
CALL MATADD(FPFH,FPT,N,N,FHP)
CALL TRACE(FHP,N,TFP)
CALL MATMtJL(H41,DL1T,L,N,N,Pll)
CALL MATMUL(Pl1,WTMdT,L,N,N,P12)
CALL MATMUL(P12,G,L,N,L,FTHP)
FQ=(-2.EA3MU*FP) + SP + TP - TFP + FTHP +- TORQUE
RETURN
END

C
C

C SUBROUTINE SMKN(XKN,XK11,XMQQP,A,MUTHD)
REAL*8 XKN4(Z,2),KNP(2,2) ,XMQQP(Z,2) ,XKl1(2,2) ,A,THD.MU
DO 10 I=1,2
D0 20 J=1,2
KNP(I,J)=XMQQP(I,J)X(-A)*MUN(THD**2)
XKN(I,J)=KNPCI,J)+XK11(I,J)

20 CONTINUE
10 CONTINUE

RETURN
END

C
C

CSUBROUTINE SMMNQ(XMNQ, DL1,WTHXIL, DL11,DL12,W,TH,DEFM,SLOPAMU)
REAL*8 XTNQ(2,1),DL12T(3,3),DL11T(3,3) .NT(3.3) ,Pl(3,3),P2(3,3)
REAL*8 P3(3,3),P4(3,3) ,P5(3,3) ,P6(3,3) ,DLl(3.3) ,WTH(3,3) ,XIL(3,3)
REAL3*8 W(3,3),DL11(3,3),DL12(3,3) ,TH,DEFM,SLOPA,MU
M=2
L:1
N 23

CALL TRANJS(DL11.DL11T,N,N)
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CALL TRANS(DL12,DL12T,N,N)
CALL TRANS(WWT,ItN)
CALL MATMUL(NTH,DL1,N,N,N,P1)
CALL MATMUL(Pl,XILN,N. N,P2)
CALL MATMUL(PZ,DL11T,N,tl,N,P3)
CALL MATMIJL(P3,WT,N,N,N.P4)
CALL TRACE(P4,N,TFP1)
XMNQ(1,1)=TFP1 + ((.35OOO000000O)*A*MU)
CALL MATMUL(PZ,DL12T,N,N,N,P5)
CALL MATMUL(P5,WT,NN,N,P6)
CALL TRACE(P6,N,TFP2)
XMNQ(2,.1)=TFPZ + (-.O5OOOOOOOOOOOO3EAXMU)
RETURN
END

C
C
C

SUBROUTINE SMFN(FN, H21,W,G,WRDD, DL1,XIL, DL11, DL12.,WD, DL1DH'U,TH,
#THD, DEFM, DEFMD, SLOP, SLOPD)
REAL*8 FN(2,1) ,Pl(2,3),PZ(3,3),P3(3, 3),P4(3,3),P5(3,3) ,P6(3,3)
REAL3E8 P7(3,3),P8(3,3),P9(3. 3),PlO(3, 3),Pll(3,3) ,P12(3,3),P'3(3,3)

REAL3E8 FN1(3,3),FN2(3,3),G(3, 1) ,H21(Z,3),WRDD(3,3) ,DL1D(3,3)
REAL3E8 WD(3,3),H41(1,3),XIL(3,3),W(3,3) ,DL11(3,3),DL12(3,3)
REAL3*8 DL1(3,3) ,DL11T(3,3) ,DL1ZT(3, 3),WT(3,3)
REAL3E8 TH,THD,DEFM,DEFMD,SLOP,SLOPD
M= 2
L~l
N=3
CALL TRANS(W,WT,N,N)
CALL MATMUL(H21,WT,M,N,N,P1)
CALL MATMUL(Pl,G,M,N,L,FP)
CALL TRANS(DL11,DL11T,N,N)
CALL TRANS(DL12,DL1ZT,N,N)
CALL MATMUL(WRDD,DL1,N,N,N,P2)
CALL MATMUL(P2,XIL,N,N,NP3)
CALL MATMUL(P3,DL11T,N,N,N,P4)
CALL MATMUL(P'.,WT,N,N,N,P5)
CALL MATMUL(WD,DL1D,N,N,N,P6)
CALL MATMUL(P6,XIL,N,N,N,P7)
CALL MATMUL(P7,DLI1T,N,N,N,P8)
CALL MATMUL(P8,WT,N,N,N,P9)
CALL MATMUL(P3,DL12T,N,N,N,P10)
CALL MATMUL(PlO,WT,14,N,N,Pll)
CALL MATMUL(P7,DL12T,N,N,NP12)
CALL MATMUL(Pl2,WT,N,N,N,P13)
DO 10 1=1,3
DO 20 J=1,3

20 CONTINUE
10 CONTINUE

CALL MATADD(P5,P9,N,N,FN1)
CALL MATADD(Pll,P13,N,N,FN2)
CALL TRACE(FN1,N,TFN1)
CALL TRACE(FN2,N,TFN2)
SP( 1,1) :TFN1
SP(2, 1 )TFN2
CALL MATMUL(H41, DL11T,L,N,N,P14)
CALL MATMUL(P14,WT,L,N,N,P15)
CALL rIATMUL(Pl5.G, L,t,L, FN3)
CALL MATMUL(H41,DL12T,L,N,N,P16)
CALL MATMUL(Pl6,WT,L,NN,P17)
CALL MATMUL(P17,G, L,N,L,FN4)
TP( 1,1 )=FN3
TP(2,1)=FN4
DO 31 I=1,2
Fli(I,1)=FP(I,l) - SP(I,1) + TP(I,1)

31 CONTINUE
RETURN
END
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C
C

SUBROUTINE SMMNIN(XMNN,XMQQP,MLA.MUXXI,YYI,MX)
REALM8 XMNN(2,2),XMQQP(Z,2) ,ML,MU,A,XXI,YYI,MX
DO 10 I=1,2
DO 20 J=1,2
XMNN(I,J)=0. 00000000000000

20 CONTINUE
10 CONTINUE

XMNN(1,1)=ML
XMNN(1,2)=MX
XMIN(Z, 1)=MX
XMNN(2,2)=XXI+YYI
DO 30 I=1,2
DO 40 J=1,2
XMNN( I, J)=XMNN(I,J) + XMQQP(I, J )*AMU

40 CONTINUE
30 CONTINUE

RETURN
END

C
C MATRIX MULTIPLICATION SUBROUTINE
C

SUBROUTINE MATMULCAD,M,L,N,C)
REAL3E8 A(ML),B(LPN),C(M,N)
DO 10 I11,M
DO 20 J=1,N
C(I,J)=0.0
DO 30 INDEX=1,L
C(I,J)=C(I,J) + A(I..INDEX)*B(INDEX,J)

30 CONTINUE
20 CONTINUE

10 CONTINUE
RETURN
END

C
C MATRIX TRANSPOSE SUBROUTINE
C

SUBROUTINE TRANS(A,B,M,L)
REAL*8 A(M,L),B(L,M)
DO 10 I=1,M
DO 20 J=1,L

20 CONINUEI,
10 CONTINUE

RECOTIURN
REDR

CN
C MARXTAESROTN
C MARXTAESBOTN

SURUIETAC(,,RC
SUROTINE A(MM) MTA
RACL0. 0(,
DO 1=0.01,
DRCO RA 10 A(II

10 CTNUE A(,I
RECOTIURN
REDR

CN
C MTI DIINSBOTN
C MTI DIINSBOTN

* .. UBOUIN MTAD(PBM,,C
SUROUINE (MA),B(AL,CM,L,)
DO 108 IA1M.L,(,)CM
DO 20 J-1,L
CO(20JA(,J)+BIJ

20 CONINUE(IJ BIJ
10 CONTINUE

RETURN
C END
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C SUBROUTINE BIGFOR(BIGM,BIGF,MQQ,XMQN,FQ,XMQ,XMNt,XKJ,FNU)
REAL*8 BIGMC3,3),BIGF(3, 1) ,XMQN4(1,2),XMNQ(2, 1),XM1NN(2,2) ,XKN4(2,2)

M= 2
L~l

BIGM(i,2)=XMQN(l, 1)
BIGM(1,3)=XMQN(1,2)
BIGM(2, 1)=XMNQ(1, 1)
BIGM(2,2)=XMNN(l, 1)
BIGM(2, 3)=XMNN(1,2)
BIGM(3, 1)=XMNQ(2. 1)
BIGMC3,2)=XMNN(2, 1)
BIGMC3, 3)=XMNN(2,2)

CALL MATMUL(XKN,U,M,M,L,P)
BIGFC2, 1 )FN(l, 1)-PC 1,1)
BIGF(3, 1)=FN(2, 1)-P(2, 1)
RETURN
END

C
C
C

SUBROUTINE XLEQ(BIGM,BIGF,SOL)
REAL3ES BIGM(3,3) ,BIGF(3,1),SOL(3) ,WKAREAC18)
M~ 1
N=3
CALL LEQT2F (BIGM,M,N,N,BIGF,M,WKAREA,IER)
DO 10 I=1,3
SOL(I)-BIGF(I,l)

10 CONTINUE
RETURN
END

C
C
C

SUBROUTINE GLOB(GPOS,W,DEFM)
REAL3M8 GPOS(3) ,W(3,S) ,DEFM,RL(3)
RU! )=1.0DD
RLC 2) :0 000
RL(3)=DEFM
N=3
1:1
CALL MATMULCW,RL,N,N,L,GPOS)
RETURN
END

EN DJ B
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APPENDIX C

DERIVATION OF THE SHAPE FUNCTION MATRIX
AND THE NODAL DISPLACEMENT VECTOR

A cubic shape function is assumed to represent the

transverse displacement of the single link flexible arm

as follows,

v = a0 + a1 x + a2 x
2 + a3 x

3  - displacement (C.1)

= a1 + 2. a2 x + 3. a3 x2  - slope (C.2)

The boundary conditions of zero displacement and slope

at the base where x is equal to minus the link length, L,

is invoked. This is in accordance with the positive sign

convention of the local coordinate system.

Substituting the boundary conditions into the shape

functions gives,

v(-L) = a0 - a1 L + a 2 L 2 _ a 3 L3 = 0 (C.3)

2=(-L) a1 - 2. a2 L + 3. a3 L =0 (C.4)

v(0) = a0  (C.5)

(0) = a1  (C. 6)

Substituting (C.5) and (C.6) into (C.3) and (C.4) and

solving the two equations for a2 and a3 gives:

a2 = (2. t(0) L - 3. v(0))/L 2  (C.7)

a 3  = ( (0) L- 2. v(0))/L 3  (C.8)
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Substituting (C.5), (C.6), (C.7), (C.8) into (C.1) and

collecting terms gives an expression for the transverse

displacement along the arm length as a function of the arm

tip nodal displacements, v(O) and ¢(O),

v(x) = 1. - (3. x2 )/L 2 
- (2. x 3 )/L 3 ) v(0) + (x +

(2. x2 )!L + (x3 )/L 2 ) (0) (C.9)

Substituting v(x) into the 3xl deformation vector

results in a 3x2 shape function matrix and a 2xl nodal

displacement vector as follows,

0 0

D (O,O,v(x))T (v(O),p(O))T
o 0

3x2  2x 3  (X + 2x2 + x 3

L 2 L 3 ( L+-+ L

(C. 10)

Since the expression v'' is necessary for determining

the potential energy due to deformation, the shape function

matrix is differentiated twice and results in the following

modified shape function matrix.

[Vo
0l 0

(0,0,v',)T 0 0 (v(0), (0))

6 12x) 4 6x) C l
+ (C.l11)( 2  3 ( -2

LM



The theoretical strain is computed from the expression

for v'' obtained from the modified shape function matrix.

Assuming simple beam theory, v'' is approximated to equal

the curvature, and since curvature is related to strain, the

following expression is obtained for the strain:

m c1 v'' (C.12)

C is the strain at the maximum distance from them

neutral axis

cI is the maximum distance from the neutral axis
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APPENDIX D

LINEARIZATION, STATE SPACE REPRESENTATION,
AND OPTIMAL CONTROLLER DESIGN

OF SINGLE-LINK DYNAMIC EQUATIONS (ERLS)

The equations of motion for the single-link flexible arm

were defined as follows:

MQQ e + MQN U = F (D.l)

MNQ 6 + MNN U + KN U = FN (D.2)

The linearized operating point is defined as follows:

U = 0.0 e = 0.0 (D.3)
= :o.o = o.o

So.o = o.o

Taking the differential of each coefficient and term in

the equations of motion and evaluating them at the operating

point gives the fol-owing two linearized equations of motion.

F 1 0 + F2 U = T (D.4)

F 0 + F U + F U = 0.0 (D.5)3 4 5

where the coefficients are the linearized complements of

the non-linear coefficients as follows:

F 1 is from MQQ, F2 is from MQN, and T is the applied

torque.

F 3 is from MNQ, F4 is from MNN, and F5 is from KN.

The state space variables are defined as follows:
x I = X

x v x 4  (D.6)

x 5  V x6 8
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Utilizing equations (D.3) through (D.5) and the state

variable description, the following 6x6 matrix equation

is formed:

Fo- F -1~jV7
0 1 2 0 0' 0 0 0 0 0 0 --i

2 0 0 0 0 -F x2  0
0 F3  F4  0 0 5

i 3 0 0 0 0 2x2 3 + 0

2xl 2x2

1 0 0 0 0 0 i0 1 0 0 0 0 0

10 0 0 0 1 50 010 0  L
x 6j 3 0 0 x6

0 0 0 0 10 0 0 1 0 j

M F T

(D.7)

Equation (D.7) is then put into standard state space

format,

=A X + B u (D.8)
AM-i -l

where A=M F and B=M T I .

The output equation having C as the identity matrix is,

Y= C X

Using the mainframe computer CONTROLS program OPTSYS, an

optimal controller for the linearized equations of motion is

designed and the optimal feedback gain control matrix, Gc,

is determined. The closed loop feedback control system for

the linearized plant is as follows:
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X-REFERENCE A =Ax +Bu X-ACTUAL
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